skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Froula, D_H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dephasingless laser wakefield acceleration (DLWFA), a novel laser wakefield acceleration concept based on the recently demonstrated “flying focus” technology, offers a new paradigm in laser-plasma acceleration that could advance the progress toward a TeV linear accelerator using a single-stage system without guiding structures. The recently proposed NSF OPAL laser facility could be the transformative technology that enables this grand challenge in laser-plasma acceleration. We review the viable parameter space for DLWFA based on the scaling of its performance with laser and plasma parameters, and we compare that performance to traditional laser wakefield acceleration. These scalings indicate the necessity for ultrashort, high-energy laser architectures such as NSF OPAL to achieve groundbreaking electron energies using DLWFA. Initial results from MTW-OPAL, the platform for the 6-J DLWFA demonstration experiment, show a tight, round focal spot over a distance of 3.7 mm. New particle-in-cell simulations of that platform indicate that using hydrogen for DLWFA reduces the amount of laser light that is distorted due to refraction at ionization fronts. An experimental path, and the computational and technical design work along that path, from the current status of the field to a single-stage, 100-GeV electron beam via DLWFA on NSF OPAL is outlined. Progress along that path is presented. 
    more » « less
  2. It has recently been demonstrated experimentally that a turbulent plasma created by the collision of two inhomogeneous, asymmetric, weakly magnetized, laser-produced plasma jets can generate strong stochastic magnetic fields via the small-scale turbulent dynamo mechanism, provided the magnetic Reynolds number of the plasma is sufficiently large. In this paper, we compare such a plasma with one arising from two pre-magnetized plasma jets whose creation is identical save for the addition of a strong external magnetic field imposed by a pulsed magnetic field generator. We investigate the differences between the two turbulent systems using a Thomson-scattering diagnostic, x-ray self-emission imaging, and proton radiography. The Thomson-scattering spectra and x-ray images suggest that the external magnetic field has a limited effect on the plasma dynamics in the experiment. Although the external magnetic field induces collimation of the flows in the colliding plasma jets and although the initial strengths of the magnetic fields arising from the interaction between the colliding jets are significantly larger as a result of the external field, the energies and morphologies of the stochastic magnetic fields post-amplification are indistinguishable. We conclude that, for turbulent laser-plasmas with supercritical magnetic Reynolds numbers, the dynamo-amplified magnetic fields are determined by the turbulent dynamics rather than the seed fields or modest changes in the initial flow dynamics of the plasma, a finding consistent with theoretical expectations and simulations of turbulent dynamos. 
    more » « less